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FOREWORD 

An error affecting only the triangular grid was pointed out in the defining equations for 

the radiation admittance just shortly before publication of this report.   That error has been 

corrected and the equations as they are given in the appendix are now correct.   As a result, 

the numbers given in the body of the report for any quantity pertaining to the triangular grid 

are wrong and should not be used for any design purpose.   The error is one of magnitude 

only and does not affect the validity of the comparison of mode amplitude with mode ampli- 

tude if the comparison is restricted to ordering the modes relative to one another.   The 

numbers given for these quantities should not be compared with experiment.   A valid com- 

parison with experiment is given in the text (Figure 5) for the triangular grid and this was 

done with the corrected equations.   The error did not in any way affect the rectangular grid. 



TABLE OF CONTENTS 

Section Title 

I INTRODUCTION  

II EXTERNAL MODE STUDY  

III STUDY OF THE MATRIX  

IV STUDY OF THE INTERNAL MODES  

V CONCLUSIONS  

VI REFERENCES      

APPENDIX A     
Derivation of the Mutual Coupling in an Infinite Array of 
Rectangular Waveguide Horns 

1 

3 

13 

23 

41 

43 

45 

LIST OF ILLUSTRATIONS 

Figure Title Page 

1 Array Geometry  6 

2 A Map of the Real Part of Hn(p, P) and the Number of Iterations 
(M) Necessary for Convergence as a Function of p and P  10 

3 The Filling of the "Empty Matrix"  14 

4 Comparison of Theory and Experiment for an E-Plane Scan of an 
Array of Square Waveguides on a Square Grid  38 

5 Comparison of Theory and Experiment for an H-Plane Scan of an 
Array of Rectangular Waveguides on a Triangular Grid  39 

ii 



LIST OF TABLES 

Table Title Page 

1 Order of the Waveguide LSE Modes by Propagation Constant  5 

M 
2 Hn(p, P) =    ]T   kmn(p, P) for n = 0            12 

m=-M 
3 Absolute Values of the Elements in Part of the Matrix             15 

4 Approximate Main and Subdiagonal Matrix Element Values         16 

5 Constancy of Main Diagonal Element with p or q             17 

6 Comparison of a Full Matrix with an Empty Matrix for a Rectangular 
Grid Array         18 

7 Comparison of Full and Empty Matrix at Four Points in Sine Theta 
Space for a Rectangular Grid Array         20 

8 Full and Empty Matrix Solutions for the Radiation Admittance Along 
an E-Plane Cut on a Square Grid Array of Square Waveguides         21 

9 E Plane Cut on a Square Grid Array of Square Waveguides; Comparison 
of Advanced Theory with the Simple Grating Lobe Series         24 

10 Mode Admittance Contributions for a Triangular Grid Array at H-Plane 
sin 0 = 0.5         26 

11 Triangular Grid Mode Comparison Based Upon Mode Amplitude 
Squared for H-Plane Scan         28 

12 Mode Comparison Based Upon Mode Amplitude Squared for E-Plane 
Scan         30 

13 Triangular Grid Mode Comparison Based Upon Mode Amplitude 
Squared for Intercardinal Scan         31 

14 Triangular Grid Mode Order            32 

15 Rectangular Grid Mode Comparison Based Upon Mode Amplitude 
Squared for H-Plane Scan         33 

16 Rectangular Grid Mode Comparison Based Upon Mode Amplitude 
Squared for E-Plane Scan         34 

17 Rectangular Grid Mode Comparison Based Upon Mode Amplitude 
Squared for Intercardinal Scan         35 

18 Rectangular Grid Mode Order         36 

19 Mode Admittance Contributions for a Triangular Grid Array at 
H-Plane sin 9 = 0. 5         37 

iii 



ACKNOWLEDGMENT 

The author wishes to thank Mr. Bliss Diamond of Lincoln Laboratories, Lexington, 

Mass. for his interest and efforts in checking over the derivation of the defining equations 

for the radiation admittance. 

iv 



ABSTRACT 

This report gives the complete derivation (in an appendix) of the radiation admittance 

of a rectangular waveguide acting as an element in an infinite phased array.   The derived 

equations are capable of predicting the experimentally observed anomalous notch that has 

been found to exist in arrays composed of large waveguides. The defining equations demon- 

strate that it is the existence of nonpropagating higher order modes inside the element 

waveguides that determine the behavior of an infinite array. 

It was the purpose of this study to determine what waveguide modes were important 

for a reasonably confident prediction of the radiation admittance of a rectangular waveguide 

in an array.   It is shown that the number of modes needed for this is not excessively great, 

but that more are needed if it is desired to predict the position of an anomalous notch with 

any great degree of confidence. 





MUTUAL COUPLING STUDY 

SECTION I 

INTRODUCTION 

In recent years, a very considerable effort has been made by a number of workers to 

determine the effects on the radiation characteristics of a radiating element when it is 

placed in an array of other such elements.   It has been found that the radiation impedance 

(or admittance) of an element in an array, in addition to having a variation with the scan 

angle of the array, exhibits a strong dependency upon the spacing between elements, the 

type of grid on which the element is placed, the size and shape of the element, and the 

proximity of the element to the edge of a finite array.   It has been discovered that when an 

array becomes sufficiently large, a centrally located element does not have a measurably 

altered characteristic with further increase in the physical size of the array.    For such a 

situation, one is free to consider the element as lying in an infinite array environment. 

One of the first efforts to analyze an infinite array in terms of the field in the aperture 

of an element was that of Edelberg and Oliner (Ref. 1), who considered an infinite rectan- 

gular array of slots or rectangular waveguides.   They assumed that the aperture field was 

in the TE10 mode only, without regard to element size or the angle to which the array was 

scanned.   Experiments, however, indicated that if the waveguide element was sufficiently 

large, at least for the triangular grid, then a notch could appear in the element pattern at 

scan angles somewhat less than those corresponding to a visible grating lobe formation. 

Such a notch was not predicted by the grating lobe series approach, which was based upon 

the existence of only the TE10 mode in the waveguide aperture.    Farrell and Kuhn (Ref. 2) 

have been able to predict the experimentally observed anomaly at least for the triangular 

grid array of waveguide horns by including in their analysis the possibility of higher order 

modes inside the elemental waveguide. 

The purpose of this study was to determine which internal waveguide modes and how 

many external free space modes are necessary using Farrell and Kuhn's analysis (see 

Appendix) to adequately predict the behavior of a rectangular waveguide acting as an ele- 

ment in a phased array for any arbitrary scan angle of the array. Both rectangular and 

triangular grid geometries were to be considered, as well as the aspect ratio of the ele- 

mental horn. The purpose was to be accomplished by successively running the computer 

program developed by Farrell and Kuhn at each of several sine theta locations with varying 



numbers of both internal (or waveguide) modes and external (or array-space) modes until 

the predicted admittance exhibited a sensibly stationary character with any increase in the 

number of modes.   This numerical process was to be supplemented by analytical work 

when possible. 



SECTION II 

EXTERNAL MODE STUDY 

This study program was begun with an already written but incompletely debugged com- 

puter program that had been written to solve for the radiation admittance of a waveguide in 

an array.   The radiation admittance is given by (see Appendix) 

2 — ( oo oo    » 

Y=2[|]      -£^-    [j[(l, 1) (0, 0)]  +]     £    *Z     P D     J[(p, 1) (q, 0)] 
r^lO]    C P=l    q=0 pq 

L   o  J 
(1) 

OO OO \ 

+ j    L      E     qC      K[(p, 1) (q, 0)] 
p=0    q=l Pq ) 

where j[(p, 1) (q, 0)] and K[ (p, 1) (q, 0)] are complex functions of the grid type, grid size, 

element size, array scan angle, and the waveguide mode eigennumbers p and q. The vari- 

ables D and C are the waveguide higher order mode amplitude coefficients for the LSE 

mode type having the transverse component of electric field parallel (D ) with, and cross 

polarized (C ) with respect to, the incident TE1Q mode. These coefficients are the solu- 

tions of the infinite family of complex simultaneous equations having the form 

•y        -»2 oo oo 
Dpq[v]    +FPQ    £     5    PDpqj[(P'P)(q'Q)] 

+ ** 4aF CPQ + FPQ     S     £   q Cpq K[(P' P) <q> Q)]  = j FPQ J[(1' P) <0' Q)] 
(2 a) 

and 

^^b^Q^PQ     £>     £    P Dpq K[(p, P) (q, Q)] 
^ ^    p=l    q=0 ^n 

2 

(2b) 

[ Iff ]    CPQ + GPQ     ?0     S     q Cpq L[(P> P) (q> Q)]  = j GPQ K[(1> P) (0, Q)1 

where Fpo and Gpo are simple functions of the waveguide dimensions and the mode 

numbers and where L[(p, P) (q, Q)] is a complex function of the same type as J((*> and K((*)) 



above.   The manner in which the waveguide modes have been defined allows us to designate 

a mode as being of dominant polarization (MD) or of cross polarization (MC). In a waveguide 

that is 0.6A. wide and 0.2667A. high, the modes are ordered by propagation constant as shown 

in Table 1.   It will turn out, however, that the final waveguide mode order will depend upon 

the scan position in sine theta space rather than directly upon the waveguide propagation 

constant. 

The complex functions J((*)), K ((*)), and L((*)) have very similar forms, so that the 

study of the convergence properties of any one of them is adequate for all three.   The 

simplest of the three was the one chosen for investigation.   It is 

OO 00-2 
0 

\—1 abk' o  m=-°° n=-°° 

(3) 

•   S    (p) S    (P) S  (q) S (Q) 

where 

MW 
sin 

S    (p) = m^7 
[¥-*] 

m -w 
ß 

m _ v   L m\ 

ko B 

ö       - designate grid type mn r 

X = sin 0cos <p 

Y = sin 0 sin <f> 



TABLE 1 

ORDER OF THE WAVEGUIDE LSE MODES BY PROPAGATION CONSTANT 

Dominant Cross Propagation 
Constant 

p q MD. 
l 

i = 

MC. 
i 

i = 

v 
k 

0 

1 0 0 — jO.5527 

2 0 1 — 1.3333 

0 l — 1 1.5860 

1 l 2 2 1.7916 

3 0 3 — 2.2913 

2 l 4 3 2.3007 

3 l 5 4 2.9606 

4 0 6 — 3.1797 

0 2 — 5 3.6141 

4 1 7 6 3.6914 

1 2 8 7 3.7089 

2 2 9 8 3.9799 

5 0 10 — 4.0448 

3 2 11 9 4.3945 

5 1 12 10 4.4583 

4 2 13 11 4.9166 

5 2 14 12 5.5157 

0 3 — 13 5.5353 

1 3 15 14 5.5977 

2 3 16 15 5.7807 

3 3 17 16 6.0737 

4 3 18 17 6.4614 

0 4 — 18 7.4329 

1 4 19 19 7.4795 

2 4 20 20 7.6175 
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In this equation the index numbers "m" and "n" are in actuality the eigennumbers of the 

higher order modes in the free space region of the array.   Let us rewrite Equation (3) as 

ß b^z 

K[(p, P)(q, Q)] =  ^2   J   [-f-]     Sn(q) Sn(Q) ^(p, P) (4) 

o   n=-°° 

where 

Hn(p, P) = 
ö   2 

mn E 
m=-°° 

m 
L  2  _ 

1+1 mn 
S    (p) S    (P) (5) 

From purely physical considerations 

0 < X < 1 

Q 

so 0 5 X — 5 1.   Further A  > a, since "An is the cell width while "a" is the width of the 
*       a 

waveguide, so 7   11 (see Figure 1 for the grid geometries).   As a result it is always 

possible to select a value of |m | = M sufficiently large that 

M7ra X7ra 

and consequently 
'ß   a ^m 

L    2    . 
rm7ral approaches the value      —r—      as "m" becomes large.   We can 

select a still larger value of I m | = M such that 

>> pjr 

and 

V 
>> P7T 

Therefore we may write 

Hn(p, P) = Ek     (p, P) 
mnv       ' 

m=-°o 
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Consequently 

Hn(P, P) Ä 

M 

m=-M 

provided only that 

Yu   kmn(P> P) 

M  » 

M  » 

pA 
2a 

PA 
2a 

since the sum on "m" from M to °° decreases at least as fast as l/M .    For the summation 

on MnM we have from pure physical considerations 

0 < Y < 1 

so 0 f Y — 5 1.   Further B > b, since "B" is the height of the cell whereas "b" is the 
h 

height of the encompassed waveguide, so ^ 5 1.   As a result it is always possible to select 

a value of In I = N sufficiently large that 

NTrb        Y?rb 
-BT^ — 

and consequently I  -y-     approaches the value     ^TD"    
as "n" becomes large.   We can 

select a still larger value of |n | = N such that 
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Therefore we may write 
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Figure 2.   A Map of the Real Part of H  (p, P) and the Number of Iterations (M) 

Necessary for Convergence as a Function of p and P 
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provided only that 

N »as.   N »SS M    » 2b  ,    IN    »   2b 

q 
since the sum on "n" from N to °° decreases at least as fast as 1/N . 

Equation (5) was programmed for computer solution and data was obtained for n = 0, 

with a range for p and P from 0 to 7.   The value of the sum was printed out for each value 

of ± m to a maximum absolute value of M = 80, at each of 10 points in sine theta space. 

For the purpose of evaluating the resulting mass of data, it was assumed that the accumu- 

lated value of the sum at |m I =80 was the true value of the sum and that the sum had 

converged at some smaller value of Im I if the attained value were within 0. 01 percent of 

the final value.   Figure 2 is a map of the final value of the sum of Equation (5) and the 

value of "M" at which it was assumed to have converged.   Figure 2 is for a representative 
A B point in sine theta space (X = 0.3 = Y) for a rectangular grid having — = 0.667,  — = 0.3333, 

ab A A 
and rectangular waveguides having - = 0. 6 and - = 0.2667.   Table 2 is a sample case for 

A A 
which p = 1, P = 3.   The conclusion that was drawn from the mass of data in general and 

which is borne out by Figure 2 is that the maximum values for H  (p, P) occur when p = P, 

and are attained with relatively few terms.   Large values for H  (p, P) are obtained with 

only a few terms when both p and P are 2 or less and if p ^ P.   Smaller values are obtained 

within a reasonable number of terms if p (or P) is zero or unity, when P (or p) is 3 or 

greater.   Insignificant values for the sum H  (p, P) occur everywhere else but each requires 

a very large number of terms.   In the unshaded region it is easily seen that M need not 

exceed 32 for all values of P less than or equal to 5. 

11 



TABLE 2 

M 
Hn(P' P) =   2    kmn(P' P) for n = ° 

m=-M 

M Re lHo<P' P>1 ImlHo(P»P)l 

0 0. 0.005359 

1 0.136202 0.005359 

2 0.099736 0.005359 

3 0.096535 0.005359 

4 0.095597 0.005359 

5 0.095152 0.005359 

6 0.094847 0.005359 

7 0.094600 0.005359 

8 0.094393 0.005359 

9 0.094228 0.005359 

10 0.094105 0.005359 

11 0.094020 0.005359 

12 0.093966 0.005359 

13 0.093934 0.005359 

14 0.093915 0.005359 

15 0.093900 0.005359 

16 0.093886 0.005359 

17 0.093871 0.005359 

18 0.093854 0.005359 

19 0.093837 0.005359 

20 0.093822 0.005359 

21 0.093810 0.005359 

22 0.093801 0.005359 

23 0.093796 0.005359 

24 0.093792 0.005359 

79 0.093730 0.005359 

80 0.093730 0.005359 
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SECTION III 

STUDY OF THE MATRIX 

Equation (3) exhibits a symmetry of form in m, p, P versus n, q, Q so that a function 

H    (q, Q) could have been considered instead of the H  (p, P) given by Equation (5), and the 

general results expressed above would have been essentially the same.   Therefore, we may 

expect the major values for K[(p, P)(q, Q)] of Equation (3) to occur when p = P and q = Q, 

also when p, P, q, Q are all small (say ^ 2), and also when p (or P) and q (or Q) are either 

zero or unity for larger values of P (or p) and Q (or q), say greater than 2.   For all other 

values of p, P, q, Q we may expect the value of K[(p, P)(q, Q)] to become almost vanishingly 

small.   If it is assumed that these other values of p, P, q, Q yield such small values that 

they may justifiably be assumed to be identically zero, then the matrix for the left-hand side 

of Equations (2) will look like what is shown in Figure 3 where the O's and lfs denote "blank" 

and "filled" matrix elements, respectively.   Figure 3 was computed for 19 dominant (MD = 19) 

and 20 cross (MC =20) modes inside the waveguide aperture.   On this basis, of the 1521 

possible elements only 533 need to be calculated.   If it is assumed that all elements are 

equally laborious to calculate, even if the value is vanishingly small, then there is a 65 per- 

cent reduction in both time and labor in computing the matrix by retaining only the indicated 

elements and by setting the other elements to zero. 

Table 3 is a portion of the matrix for the left-hand side of Equations (2) where the upper 

left quadrant is for the D^^ part of Equation (2a), the upper right is for the C^^. part of 

Equation (2a), the lower left quadrant is for the D,,^ part of Equation (2b), and the lower 

left is for the Cm part of Equation (2b).   The portion of the matrix given was computed with 

M equal to 30 for the same grid as is shown in Figure 2 and at the sine theta point X = 0.4 =Y. 

The magnitude of the elements of the matrix bears out the expectation that the major values 

should occur when p = P and q = Q.    Most of the other values that are given are very small 

except when p, P, q, Q are all small, for which case the elements are slightly larger, as is 

also the case when p (or P) and q (or Q) are either zero or unity.   This is also in keeping 

with the expectation mentioned above. 

There are some very interesting characteristics that show up in the matrix.   Table 4 is 

a list of the approximate absolute value of the elements along the main diagonal and along the 

two subdiagonals of the matrix a part of which is shown in Table 3.   Inspection of the table 

will show that for the "dominant" modes there is a more or less constant value for the main 

diagonal matrix element associated with a particular value of "p," regardless of the value 

13 
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Figure 3.   The Filling of the "Empty Matrix" 
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TABLE 3 

ABSOLUTE VALUES OF THE ELEMENTS IN PART OF THE MATRIX 

en 

[V pq 
PQV 11 20 21 12 22 01 11 21 02 12 22 10 

11 

20 

21 

12 

22 

0.51 0.1 

2.89 

0.02 

0.06 

2.78 

0.02 

0.004 

0.006 

0.65 

0.023 

0.005 

0.059 

0.031 

0.022 

3.16 

0.06 

0.11 

0.29 

0.025 

0.047 

2.41 

0.15 

0.12 

0.08 

0.01 

0.047 

0.15 

5.06 

0.005 

0.12 

0.023 

0.06 

0.05 

0.06 

0.56 

0.078 

0.036 

0.011 

5.72 

0.10 

0.005 

0.24 

0.14 

0.05 

11.4 

0.29 

0.26 

0.12 

0.12 

0.02 

0.246 

0.372 

0.252 

0.079 

0.839 

0.107 

0.04 

0.027 

0.04 

0.01 

0.02 

0.02 

0.35 

0.011 

0.054 

01 

11 

21 

02 

12 

22 

0.025 

2.41 

0.06 

0.024 

0.16 

0.013 

0.11 

0.39 

0.53 

0.17 

0.20 

1.45 

0.11 

0.1 

5.06 

0.043 

0.019 

0.24 

0.005 

0.039 

0.003 

0.027 

5.72 

0.048 

0.01 

0.004 

0.07 

0.25 

0.09 

11.43 

3.75 0.43 

3.07 

0.38 

0.13 

0.57 

0.16 

0.06 

0.29 

3.42 

0.09 

0.15 

0.40 

0.23 

0.13 

0.11 

24.3 

0.057 

0.28 

0.12 

0.13 

23.7 

0.038 

0.07 

0.23 

0.50 

0.16 

23.7 

0.95 

0.19 

0.51 

0.29 

0.19 

0.26 

1.11 0.17 



TABLE 4 

APPROXIMATE MAIN AND SUBDIAGONAL MATRIX ELEMENT VALUES 

PQ 
Main Diagonal 

Both 
Subdiagonals Dominant Cross 

01 — 3.75 — 

11 0.51 3.07 2.41 

20 2.89 — — 

21 2.78 3.42 5.06 

02 — 24.26 — 

12 0.65 23.66 5.72 

22 3.16 23.66 11.43 

30 9.39 — — 

31 8.78 3.9 7.91 

32 9.56 23.78 17.21 

03 — 57.73 — 

13 0.63 56.66 8.74 

23 3.26 56.76 17.47 

33 9.75 56.96 26.25 

40 18.56 — — 

41 17.55 4.14 10.90 

42 18.54 23.89 23.02 

43 18.86 57.13 35.07 

04 — 106.5 — 

14 0.63 105.2 11.93 

24 3.35 105.2 23.84 

34 9.97 105.2 35.75 

44 19.23 105.2 47.66 
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for "q."   For the "cross" modes, however, the more or less constant value for the main 

diagonal element is associated with a particular value of "q" regardless of the value of "p." 

This fact is shown in Table 5. 

TABLE 5 

CONSTANCY OF MAIN DIAGONAL ELEMENT WITH p OR q 

p or q 1 2 3 4 

"dominant" (p) value 0.6 3.0 9.5 18.5 

\[¥f 0.305 1.78 5.25 10.1 
L   o J 

"cross" (q) value 3.8 24.0 57.0 105.0 

"TOP" 
2 

2.51 13.05 30.6 55.2 
L    o J 

For the subdiagonal elements, however, it is the product of "p" and "q" that appears to set 

a more or less constant value of an element so that 

p*q 1 2 3 4 6 8 9 12 16 

eh 3ment val 

x2 1 
^Äb. 

ue 2.4 

1.56 

5.5 

3.12 

8.0 

4.68 

11.0 

6.25 

17.3 

9.36 

23.5 

12.5 

26.2 

14.05 

35.5 

18.75 

47.7 

25.0 

Referring to Equation (2a), it can be seen that in the upper portion of the matrix the 
i2 

main diagonal elements are augmented by m- which is a quantity that is independent 

of "Q" (or "q").   This tends to explain the finding that there is more or less constant value 

for the main diagonal dominant mode elements associated with a value for "p" independent 

of "q."   Also, in the upper portion of the matrix we can see that the subdiagonal elements 

are au gmented by   -jV  PQ   , a quantity varying as the product of p and q. 

In the lower portion of the matrix we refer to Equation (2b) from which we see that the 
r X2       1 subdiagonal elements are augmented by    ^-r- PQ    and the main diagonal elements by 
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TABLE 6 

COMPARISON OF A FULL MATRIX WITH AN EMPTY MATRIX 
FOR A RECTANGULAR GRID ARRAY 

4- = 0.6666, 5 = 0.3333, f = 0.6000, £ = 0.2666 
A A A A 

AT SINE THETA SPACE POINT 

X = 0.500, Y = 0.750 

p Q 

Full Matrix Empty Matrix 

G B G B 

Dominant Mode Contribution 

11 0 1.350472 0.012931 1.350472 0.012931 

Principal Polarization Contribution 

1 1 -0.398926 0.142121 -0.392068 0.132788 

2 0 -0.021533 0.016890 -0.023566 0.016588 

2 1 -0.588906 0.354161 -0.577752 0.344447 

1 2 -0.039054 -0.013363 -0.036654 -0.011529 

2 2 0.006181 -0.001933 0.003594 -0.001816 

3 0 0.006367 0.003354 0.007999 -0.005562 

3 1 0.007268 -0.001699 -0.004212 -0.008395 

3 2 0.000152 0.000182 0.000187 -0.000224 

1 3 -0.032859 0.005586 -0.031-12 0.005581 

2 3 -0.076873 0.039342 -0.077453 0.038602 

3 3 0.002627 0.000462 0.000232 -0.003091 

Cross-Pol arization Contri buttons 

0 1 -0.065360 0.090943 -0.068132 0.090361 

1 1 0.035677 0.020559 0.035948 0.022415 

2 1 -0.070353 0.266874 -0.069723 0.260815 

0 2 0.000266 0.001105 -0.000260 0.000816 

1 2 0.000852 0.004222 0.000353 0.004340 

2 2 0. 000462 -0.002700 -0.000049 -0.001513 

3 1 0.002122 -0.004717 -0.003549 -0.001461 

3 2 0.000033 -0.000103 -0.000195 0.000073 

0 3 -0.002189 0.002859 -0.000920 0.001242 

1 3 0.003863 0.004180 0.003610 0.004183 

2 3 -0.008335 0.038746 -0.008757 0.038766 

3 3 0.000558 -0.001825 -0.002111 -0.000378 

Total 0.112513 0.982060 0.105982 0.939979 
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m- 2 

The augmentation of the subdiagonal elements is obviously again a product of p 
o 

and q.   The augmentation of the main diagonal elements in the lower portion of the matrix is 

by a quantity which varies with Mq" and not with "p," and tends to explain the finding that 

these elements appear to have a more or less constant value associated with a value of "q" 

independent of the value of "p." 

In both the upper and lower half of the matrix it can be seen that as "p" or "q" become 

large, both the main diagonal as well as the subdiagonal elements tend to become quite large. 

At the same time the element on the right-hand side of the equation tends to become small. 

As a result, one can see that the amplitude coefficient for a mode having MpM or "q" large 

can be expected to become relatively small.    Therefore, it is reasonable to suppose that the 

number of modes necessary to yield an adequately accurate answer should not be excessively 

great. 

The matrix emptying shown in Figure 3 was incorporated into the source program for 

the main problem and tested. Then a sample case for a distant intercardinal point in sine 

theta space was computed with both a filled matrix and an empty matrix for the simultaneous 

equations of Equations (2).   The result (by mode contribution) is shown in Table 6 for a rec- 
A B a 

tangular grid having — = 0.6666,  — = 0.3333, and waveguide dimensions - = 0.6000, 
i A A A 

- = 0.2666, and assuming M = 25, at a sine theta position X = 0. 5, Y = 0. 75.   Table 7 shows 
A 

the overall result at four other points in sine theta space.   It must be pointed out that the 

values for mode contributions and the totals for the conductance and susceptance as given in 

Tables 6 and 7 are incorrect because there was an error in the computer program by which 

they were computed.   That error, however, does not invalidate the comparison of the two 

conditions of the same matrix since the error effects both conditions equally.   It can be seen 

from the two tables that (as expected) the empty matrix predicts an answer of very reason- 

able accuracy as compared with the answer given by the full matrix.   Comparison of the 

modes used as shown in Table 6 with the form of the emptied matrix of Figure 3 shows that 

the empty matrix solution is accomplished with about 57 percent of the time and labor that 

was necessary for the full matrix solution.   The emptied matrix method of solving the 

simultaneous equations, however, is not without pitfalls because it is possible for it to pre- 

dict a negative conductance in the near vicinity of an anomalous notch.   This of course is 

physically impossible, but it does indicate the very close proximity of a notch and one could 

either accept it as being the notch, or rerun the region of the anomaly with a full matrix. 
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TABLE 7 

COMPARISON OF FULL AND EMPTY MATRIX AT FOUR POINTS IN SINE THETA SPACE 
FOR A RECTANGULAR GRID ARRAY 

4 = 0.6666, ^ = 0.3333, ^ = 0.6000, £ = 0.2666 
A A A A 

Empty Matrix Full Matrix 

X Y G B G B 

0.100 0.100 1.062749 -0.427803 1.062851 -0.428704 

0. 0.500 1.170263 -0.277261 1.181389 -0.277087 

0.400 0. 0.873127 -0.313060 0.873079 -0.294184 

0.400 0.400 1.154778 1.673230 1.280810 1.669984 

As a case in point, Table 8 gives the radiation conductance and susceptance along an 
[A      B — = — = 0.6439    made up of square waveguides 

A       A 
= 0.5898 I assuming the external mode range to be M = 25 and with MD = 4, MC = 4. 

As has been mentioned earlier, MD and MC refer to principal polarization and cross- 

polarization, respectively, of the LSE higher order modes inside the waveguides.   These 

internal modes have been selected to be those having the greatest effect on the final answer 

in E-plane for the rectangular grid, of which the square grid is a special case.   The matter 

of the selection of the modes and their number will be dealt with later in this report.   The 

point of interest is at Y = H-plane sin 0=0. 550 under the "Empty Matrix" which has a 

negative conductance of G = -0.105573.   That same point under the "Full Matrix" has a 

conductance G = 0. 947626.   Note, however, that a Y = 0. 540 under the "Full Matrix" the 

conductance is G = 0. 087137.   That this point is an anomaly can be seen by referring to 

Table 9, which compares the "Full Matrix" advanced theory with the simple grating lobe 

series.   According to the simple grating lobe series, the conductance is nearly a constant 

as the grating lobe onset position (Y = 0.553) is approached, but the susceptance is ap- 

proaching infinity.   At the grating lobe onset position the grating lobe series will predict a 

reflection coefficient of unity due to an infinite susceptance.   The advanced theory, however, 

indicates a rapidly decreasing conductance which approaches (or becomes) zero at Y = 0.540. 

At this same point the susceptance is large so that there is a unity (or nearly unity) reflec- 

tion coefficient due to the zero (or nearly zero) value of conductance.   This is an anomaly 

because it is occurring at Y = 0. 540, whereas the grating lobe onset null is at Y =0.553. 
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TABLE 8 

FULL AND EMPTY MATRIX SOLUTIONS FOR THE RADIATION ADMITTANCE 
ALONG AN E-PLANE CUT ON A SQUARE GRID ARRAY OF SQUARE WAVEGUIDES 

"Empty Matrix" "Full Matrix" 

Y G B Y G B 

0.400 0.886374 -0.045881 0.520 0.395083 1.153299 

0.425 0.828882 0.057068 0.530 0.271361 1.608455 

0.450 0.760308 0.191632 0.540 0.087137 2.584137 

0.475 0.673096 0.381052 0.550 0.947626 8.063701 

0.500 0.549421 0. 684035 0.560 4.032689 0.302194 

0.525 

0.550 

0.334051 

-0.105573 

1.315519 

2.940993 

1  0.570 3.115006 0.199048 

0.575 3.062249 -0.040632 
Y = E-plane sin 9 

0.600 2.470087 -0.057913 G = Radiation conductance 
0.625 2.242991 -0.085334 

0.650 2.121039 -0.103686 B = Radiation susceptance 
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SECTION IV 

STUDY OF THE INTERNAL MODES 

In all of the foregoing discussion no mention has been made concerning what waveguide 

modes are necessary to adequately define the final admittance value.   With an infinite num- 

ber of simultaneous equations to select from for the solution for the mode amplitude coef- 

ficients (D     and C    ) as expressed by Equations (2a) and (2b), the first problem is to include 

enough of the higher order modes nearest cutoff in order that the solution of the truncated 

set will give values that converge to very nearly the right answer.   Prior knowledge of the 

values for the coefficients or even their order of importance is completely unavailable. 

Unfortunately, the form of the expressions encountered in Equations (2a) and (2b) does not 

lend itself to analytically determining which modes are important or how many are needed 

for an adequate answer. 

At one point in the program it was decided to see if the equations — (2a) and (2b) — 

should be reconstituted in terms of the TE and TM modes instead of the LSE modes.   The 

mode coefficients are related as follows. 

D   =KTE   ^ + H   ail 
pq      L M 

a      pq b J 

c      =KTE      ^-H      K] 
pq      L pq b      PQ a J 

(8) 

where E     and H      are the mode amplitude coefficients for the pq    TE and TM modes, pq pq F ^ 
respectively.   The quantity K is one which could have been incorporated into E     and H 

The substitution of Equations (8) into (1),  (2a),   and (2b) is quite straightforward, but does 

not lead to any simplification.   On the contrary, the resulting equations are even more 

unwieldy. 

The next effort, directed toward finding an analytical convergence criterion for the 

simultaneous equations, was an attempt to derive an expression that would relate the change 

in the admittance to the change in the mode amplitude coefficients.   If this is accomplished 

by taking the derivative of Equations (1),  (2a), and (2b) with respect to the coefficients, 

considering the admittance to be a member of the group, the result is a matrix whose de- 

terminant should approach a constant value as the number of modes is increased.   This, 

however, is almost identical to solving the matrix for Equations (2a) and (2b), substituting 

the obtained values for the mode amplitude coefficients into Equation (1), and then insisting 

that the admittance "Y" must approach a constant value.   Consequently, this effort was also 

abandoned. 
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TABLE 9 

E-PLANE CUT ON A SQUARE GRID ARRAY OF SQUARE WAVEGUIDES; 
COMPARISON OF ADVANCED THEORY WITH THE SIMPLE GRATING LOBE SERIES 

Simple Grating 
Lobe Series 

Advanced Theory 

Y G B G B 

0.500 1.102326 0.0427453 - - 

0.510 1.096260 0.563385 - - 

0.520 1.090177 0.751856 0.395083 1.153299 

0.530 1.084084 1.044166 0.271361 1.608455 

0.540 1.077990 1.612427 0.087137 2.584137 

0.550 1.071903 4.065890 0.947626 8.063701 

0.560 4.017475 -0.439213 4.032689 0.302194 

0.570 3.027679 -0.436978 3.115006 0.199048 

0.580 2.668593 -0.434826 - - 

0.590 2.472502 -0.432759 - - 

0.600 2.346421 -0.430781 _ _ 

It was decided to attack the problem on a numerical basis.   To do so, the defining 

equations for the admittance and mode amplitude coefficients were programmed for computer 

solution in such a way as to include the possibility of exciting all dominant polarization and 

all cross-polarization higher order LSE waveguide modes which have either eigennumber of 

the defining pair (p, q) equal to or less than 4 and including zero.   As a consequence, there 

are 19 "dominant" and 20 "cross" higher order modes to be considered inside the wave- 

guides.   In the array-space region is was decided, on the basis of the information presented 

in the unshaded portion of Figure 2, that the range of the external eigennumbers should be 

-30 < m < 30, -30 < n < 30 in order to adequately accommodate either internal eigennumber 

(p or q) being equal to 4.   This gives a total of 3721 external modes being taken into account. 
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The output data at each point in sine theta space consisted of the complex amplitude 

coefficient for each mode and the associated contribution to the radiation admittance as well 

as the absolute value of their product.   Since the mode amplitude coefficient is essentially 

equivalent to voltage, the product of mode amplitude coefficient and mode admittance con- 

tribution has the units of current.   This last was computed because it was felt that since the 

mode contributions are essentially admittances in parallel, then those modes having the 

greatest current would be the ones of greatest importance.   That this concept is not valid 

can be seen by considering the P, Q = 2, 4 mode which from Table 10 has an |AMP*Y I = 

0.0637.   Note that the mode P, Q = 1, 2 has an |AMP*Y| = 0.3632.   If now the mode am- 

plitude coefficients for these two modes are compared, we find that they are not too 

different and, in fact, the former is the larger.   Suppose a selection criterion were 

assumed where only those modes having an | AMP*Y I greater than five percent of that of 

the dominant mode (P, Q = 1, 0) were to be considered.   Obviously the P, Q = 2, 4 mode 

would be dropped from consideration.   This, however, would be an error because Equations 

(2) show that the amplitude of any one mode is a function of the values of all of the others. 

Consequently, in any process of truncation of the infinite set of simultaneous equations, the 

omission of any mode having a substantial amplitude coefficient will very adversely affect 

the accuracy of all of the others,  upon solution of the truncated set.   The same argument 

holds for rejecting the possible selection criterion based upon the amplitude of the mode 

contribution to the radiation admittance. 

The remaining quantity suitable for selection is the mode amplitude coefficient itself. 

A few trial-and-error manipulations suggested that the best way to handle the selection was 

to work with the square of the absolute value.   That this is a pertinent choice may be recog- 

nized by noting that the waveguide mode energy is equal to the square of the mode voltage 

amplitude coefficient times the wave admittance, the latter of which is a quantity varying 

approximately inversely as the propagation constant.    Since, from Table 1, the propagation 

constants for the modes of interest are all of roughly the same order, we can safely ignore 

them for our purposes.   Squaring the value automatically tends to enhance the larger ampli- 

tude values and to very sharply suppress those that are small.   It was decided to select on 

the basis of the results obtained for the maximum number of modes that could be accommo- 

dated by the available computer (IBM 7094).    The computer runs were made at a single 

point in each of H-plane, E-plane, and one intermediate plane for each of three grid sizes 
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TABLE 10 

MODE ADMITTANCE CONTRIBUTIONS FOR A TRIANGULAR 
GRID ARRAY AT H-PLANE SIN 0 = 0.5 

PQ AMPR AMPI G B |AMP*Y| 

Dominant Mode Contribution 

1 0 1.0000 0.0000 0.8098 1.7858 1.9609 

Principal Polarization Contributions 

2 0 0.1945 1.5837 -0.7289 2.0892 3.5305 
2 4 -0.0660 -1.2233 0.0028 0.0519 0.0637 
1 2 0.0507 1.0464 -0.0168 -0.3463 0.3632 
2 2 -0.0776 -0.8977 -0.0136 -0.1574 0.1423 
1 4 -0.0269 -0.5858 -0.0024 -0.0524 0.0308 
4 2 -0. 0.0959 0. -0.0066 0.0006 
4 0 0.0425 -0.0841 -0.0447 0.0347 0.0053 
3 0 0.0133 0.0454 0.0053 0.0092 0.0005 
3 4 0. 0.0126 0. 0.0001 0. 
3 2 0. -0.0192 0. -0.0006 0. 

Cross-Polarization Contributions 

2 2 0.0162 0.2496 -0.0018 -0.0284 0.0071 
0 2 -0.0076 -0.1432 0.0039 0.0730 0.0105 
4 2 -0.0004 -0.0995 -0. -0.0033 0.0003 
1 2 -0.0036 -0.0443 -0.0018 -0.0223 0.0010 
0 4 0.0018 0.0330 0.0004 0.0081 0.0003 
3 2 -0.0005 0.0112 0. 0.0002 0. 
1 4 0.0010 0.0126 -0.0003 -0.0035 0. 

a/\  =   0.905        b/\   =   0.400        A/\   =   1.008        B/\   =   1.008 

AMPR  = real part of mode amplitude coefficient 
AMPI    = imaginary part of mode amplitude coefficient 
G = radiation conductance 
B = radiation susceptance 
AMP*Y= product of amplitude coefficient and admittance 

26 



for both rectangular and triangular grid.   For each plane, the values for each grid size 

corresponding to a given mode were added, in order to obtain a composite value valid for 

several grids and waveguide sizes.   Doing this will also tend to average out small varia- 

tions in the order for one grid size relative to another.   The mode order for that scan plane 

was determined by the value of that mode's sum in relation to the other mode sums.   These 

data are shown in Tables 11, 12, and 13 for the triangular grid and in Tables 15, 16, and 17 

for the rectangular grid.   Tables 14 and 18 are the final mode order for each of the three 

scan planes for the triangular grid and the rectangular grid, respectively. 

The problem at this point is to effectively use the data presented in Tables 14 and 18. 

It was decided that if a value for a mode in the two tables above exceeded one percent of 

the Dominant Mode (TE10) value of 3.0, then that mode should be included in the set for the 

simultaneous solution of Equations (2) after truncation.   This one percent level is indicated 

by the short line in each column in both tables.   The modes were accordingly incorporated 

into the computer program.   Table 10 is an excerpt from the 19 "dominant" and 20 "cross" 

case for an H-plane point.   Table 19 is a similar table for the same H-plane point except 

that the modes are limited to those specified by Table 14 for the triangular grid.   Table 10, 

if it were all present, would give a total radiation admittance of Y = 0. 011997 + j 3. 429789. 

Table 19 gives Y = 0. 030419 + j 3.238305.   The difference between these amounts to an 

error in the absolute value of less than six percent.   For the same grid at an E-plane point 

(x = o, y = 0.5), the 19 and 20 gives Y = 1.602131 + j 0.221731 and the modes of Table 14 

give Y = 1. 594270 + j 0.219018.   At an intercardinal point (x = 0.23, y = 0.23) not far from 

the grating lobe circle, the results are, for the 19 and 20, Y = 0.283723 + j 1.826422 versus 

Y = 0. 342088 + j 1. 329688 for the suggested number of modes.   The error for the inter- 

cardinal point is about 24.6 percent in the absolute value of the admittance.   This could 

easily be improved by including only a few more modes from the table for the mode order 

(Table 14). 

The suggested number of modes (Table 18) was tested by making an E-plane cut for a 

rectangular grid as shown in Figure 4. This is the same array and the same cut that was 

discussed in association with Tables 8 and 9 in the last paragraph of the previous section. 

It was pointed out that the notch shown in Table 3 by the "Advanced Theory" is an anomalous 

27 



TABLE 11 

TRIANGULAR GRID MODE COMPARISON BASED UPON MODE AMPLITUDE SQUARED 
FOR H-PLANE SCAN 

X = H-plane sin 0 

a/\=0.905,b/x=0.4 a/>=0.75,b/v=0.333 a/\=0.6364,b/\=0.2828 
PQ A/\=1.008,B/\=1.008 A/\=0.8333, B/\=0.833 A/\=0.7071, B/>=0.7071 Sum* 

X = 0.5, Y=0 X = 0.7, Y=0 X= 0.7, Y=0 

Principal Polarization 

1 1 0. 0. 0. 0. 
2 0 2.5459 0.1258 0.0409 2.7126 
1 2 1.0976 0.2608 0.1356 1.3993 
3 0 0.0023 0.0029 0.0009 0.0061 
1 3 0. 0. 0. 0. 
1 4 0.3437 0.0912 0.0514 0.4863 
3 1 0. 0. 0. 0. 
2 2 0.8119 0.0605 0.0267 0.8991 
2 1 0. 0. 0. 0. 
4 0 0.0089 0.0020 0.0008 0.0117 
2 4 1.5009 0.0063 0.0082 1.5154 
3 2 0.0004 0. 0. 0. 
4 1 0. 0. 0. 0. 
3 3 0. 0. 0. 0. 
2 3 0. 0. 0. 0. 
4 2 0.0092 0.0035 0.0021 0.0148 
3 4 0.0002 0.0004 0. 0.0006 
4 3 0. 0. 0. 0. 

Cross-Polarization 

1 1 0. 0. 0. 0. 
0 1 0. 0. 0. 0. 
3 1 0. 0. 0. 0. 
2 1 0. 0. 0. 0. 
1 2 0.0020 0.0014 0.0001 0.0035 
0 2 0.0205 0.0022 0.0009 0.0236 
2 2 0.0626 0.0069 0.0029 0.0724 
4 1 0. 0. 0. 0. 
1 3 0. 0. 0. 0. 
3 2 0.0001 0.0007 0. 0.0008 
4 2 0.0099 0.0033 0.0016 9.0148 
3 3 0. 0. 0. 0. 
1 4 0.0002 0.0001 0. 0.0002 
0 4 0.0011 0.0001 0. 0.0012 
3 4 0. 0. 0. 0. 
0 3 0. 0. 0. 0. 
2 3 0. 0. 0. 

  
0. 

* Sum of the Three Grids PQ     Mode Value 
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one because it is occurring inside of the grating lobe onset position and of the notch predicted 

by the simple grating lobe series.   Insofar as the experimental curve is concerned, all that 

can be said is that the "Advanced Theory" agrees with the experiment better than does the 

simple grating lobe series.   This poor agreement may be due to the array being too small 

even at 13 x 13. 

The suggested number of modes (Table 14) was tested by making an H-plane cut for a 

triangular grid, as shown in Figure 5.   Here the anomalous notch is far enough inside the 

H-plane onset position of the grating lobe that it is readily obvious.   There are three 

"Advanced Theory" predictions depicted on this figure, all of which predict a notch.   The 

curve for one dominant and no cross modes is with the TE~n mode only.   The curve with 

five dominant and one cross is the suggested list to the lines (Table 14), and the predicted 

notch is somewhat farther out in sine theta space.   The other curve is the first eight 

dominant and the first seven cross from the suggested list and predicts a notch nearly like 

that of the TE20 only.   It is apparent from this result that selecting the modes only to the 

one-percent level in Table 14 is inadequate to give a stationary prediction for the notch 

even though the radiation admittance is relatively stationary. 
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TABLE 12 

MODE COMPARISON BASED UPON MODE AMPLITUDE SQUARED 
FOR E-PLANE SCAN 

Y = E-plane sin 0 

aA=0.905,b/X=0.4 a/X=0.75,b/X=0.333 a/X=0.6364,b/X=0.2828 
PQ A/X=1.008,B/X=1.008 1  A/X=0.8333,B/X=0.8333 A/X=0.7071, B/X=0.7071 Sum* 

X= 0, Y= 0.5 X= 0, Y= 0.7 X= 0, Y= 0.7 

Principal Polarization 

1 1 0.1676 0.1862 0.2393 0.5931 
2 0 0. 0. 0. 0. 
1 2 0.0736 0.0929 0.0796 0.2461 
3 0 0.0780 0.0122 0.0099 0.1001 

1 1 3 0.0207 0.0309 0.0424 0.0940 
1 4 0.0314 0.0357 0.0317 0.0987 
3 1 0.0138 0.0113 0.0108 0.0359 
2 2 0. 0. 0. 0. 
2 1 0. 0. 0. 0. 
4 0 0. 0. 0. 0. 
24 0. 0. 0. 0. 
3 2 0.0048 0.0023 0.0029 0.0100 
4 1 0. 0. 0. 0. 
3 3 0.0060 0.0044 0.0032 0.0136 
2 3 0. 0. 0. 0. 
4 2 0. 0. 0. 0. 
3 4 0.0013 0.0008 0.0009 0.0030 
4 3 0. 0. 0. 0. 

Cross -Polarization 

1 1 0.1682 0.1574 0.1082 0.4338 
0 1 0. 0. 0. 0. 
3 1 0.0449 0.0515 0.0401 0.1365 
2 1 0. 0. 0. 0. 
1 2 0.0016 0.0023 0.0021 0.0060 
0 2 0. 0. 0. 0. 
2 2 0. 0. 0. 0. 
4 1 0. 0. 0. 0. 
1 3 0.0018 0.0017 0.0014 0.0050 
3 2 0.0008 0.0017 0.0015 0.0040 
4 2 0. 0. 0. 0. 
3 3 0.0004 0.0006 0.0006 0.0016 
14 0. 0.0001 0.0001 0.0002 
04 0. 0. 0. 0. 
3 4 0. 0.0001 0.0001 0.0002 
0 3 0. 0. 0. 0. 
2 3 0. 0. 0. 0. 

*Sum of the Three Grids PQ     Mode Value 
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TABLE 13 

TRIANGULAR GRID MODE COMPARISON BASED UPON MODE AMPLITUDE SQUARED 
FOR INTERCARDIN AL SCAN 

a/X=0.905,b/X=0.4 1    a/X=0.75,b/X=0.333 a/X=0.6364,b/X=0.2828 
PQ A/X=1.008,B/X=1.008 A/X=0.8333,B/X=0.8333 A/X=0.7071,B/X=0. 7071 Sum* 

X = 0.23, Y= 0.23 X= 0.4, Y= 0.4 X = 0.5, Y= 0.5 

Principal Polarization 

1 1 0.5519 0.2312 0.1950 0.9781 
2 0 2.6034 0.1814 0.0525 2.8373 
1 2 0.3629 0.1233 0.0812 0.5674 
3 0 0.0193 0.0025 0.0017 0.0235 
1 3 0.0850 0.0388 0.0338 0.1576 
14 0.1151 0.0473 0.0342 0.1966 
3 1 0.0060 0.0007 0.0014 0.0081 
2 2 0.8334 0.0777 0.0276 0.9387 
2 1 0.2108 0.0242 0.0117 0.2467 
4 0 0.0037 0.0018 0.0010 0.0065 
24 0.2213 0.0006 0.0093 0.2312 
3 2 0.0097 0.0015 0.0008 0.0120 
4 1 0.0006 0.0010 0.0015 0.0031 
3 3 0.0004 0.0004 0.0004 0.0012 
23 0.0489 0.0078 0.0044 0.0611 
4 2 0.0037 0.0022 0.0014 0.0073 
3 4 0.0026 0.0004 0.0002 0.0032 
4 3 0.0003 0.0006 0.0008 0.0017 

Cross-Polarization 

1 1 0.1175 0.0049 0.0091 0.1315 
0 1 0.0576 0.0092 0.0101 0.0769 
3 1 0.0100 0.0028 0.0040 0.0168 
2 1 0.0770 0.0133 0.0162 0.1065 
1 2 0.0120 0.0007 0.0002 0.0129 
0 2 0.0070 0.0015 0.0007 0.0092 
2 2 0.0199 0.0044 0.0020 0.0263 
4 1 0.0078 0.0064 0.0084 0.0226 
1 3 0.0007 0.0001 0.0001 0.0009 
3 2 0.0030 0.0003 0.0002 0.0035 
4 2 0.0030 0.0018 0.0010 0.0058 
3 3 0. 0.0001 0.0001 0.0002 
14 0.0004 0. 0. 0.0004 
0 4 0.0004 0. 0. 0.0004 
3 4 0.0001 0. 0. 0.0001 
0 3 0.0004 0.0001 0.0001 0.0006 
2 3 0. 0.0003 0.0003 0.0006 

* Sum of the Three Grids PQth Mode Value 

31 



TABLE 14 

TRIANGULAR GRID MODE ORDER 

Order 
H-Plane Scan E-Plane Scan Intercardinal Scan 

P Q Sum PQ Sum PQ Sum 

Dominant Mode 

0 10 3.0000 10 3.0000 10 3.0000 

Principal Polarization 

1 20 2.7126 11 0.5931 20 2.8373 
2 24 1.5154 12 0.2461 11 0.9781 
3 12 1.3993 30 0.1001 22 0.9387 
4 22 0.8991 14 0.0987 12 0.5674 
5 14 0.4863 13 0.0940 21 0.2467 
6 42 0.0.48 31 0.0359 24 0.2312 
7 40 0.0117 33 0.0136 14 0.1966 
8 30 0.0061 32 0.0100 13 0.1576 
9 34 0.0006 34 0.0030 23 0.0611 

10 32 0.0004 30 0.0235 
11 32 0.0120 
12 31 0.0081 
13 42 0.0073 
14 40 0.0065 
15 34 0.0032 
16 41 0.0031 
17 43 0.0017 

Cross-Polarization 

1 22 0.0724 11 0.4338 11 0.1315 
2 
3 

02 
42 

0.0236 
0.0148 

31 
12 

0.1365 21 
01 

0.1065 
0.0769 0.0060 

4 12 0.0035 13 0.0050 22 0.0263 
5 04 0.0012 32 0.0040 41 0.0226 
6 32 0.0008 33 0.0016 31 0.0168 
7 14 0.0002 14 0.0002 12 0.0129 
8 34 0.0002 02 0.0092 
9 42 0.0058 

10 32 0.0035 
11 13 0.0009 
12 03 0.0006 
13 23 0.0006 
14 14 0.0004 
15 04 0.0004 
16 33 0.0002 
17 34 0.0001 
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TABLE 15 

RECTANGULAR GRID MODE COMPARISON BASED UPON MODE AMPLITUDE SQUARED 
FOR H-PLANE SCAN 

X = H-plane sin 0 

a/X=0.6,b/X=0.2667 a/X=0.5898,b/X=0.5898 a/X=0.6364,b/X=0.6364 
PQ A/X=0.666,B/X=0.333 A/X=0.6439 ,B/X=0.6439 A/X=0.7071, B/X=0.7071 Sum* 

X = 0.4, Y= 0 X= 0.5, Y= 0 X= 0.375, Y= 0 

Principal Polarization 

1 1 0. 0. 0. 0. 
1 2 0.0155 0.0042 0.0058 0.0255 
14 0.0083 0.0028 0.0037 0.0148 
1 3 0. 0. 0. 0. 
2 0 0.0069 0.0105 0.0412 0.0586 
4 0 0.0002 0.0003 0.0003 0.0008 
2 1 0. 0. 0. 0. 
3 0 0.0014 0.0011 0.0017 0.0042 
3 1 0. 0. 0. 0. 
3 2 0. 0. 0. 0. 
2 2 0.0001 0. 0. 0.0001 
2 3 
4 2 
4 1 
3 3 
4 3 
2 4 
3 4 

Cross -Polarization 

1 1 0. 0. 0. 0. 
3 1 0. 0. 0. 0. 
1 2 0. 0. 0.0002 0.0002 
0 1 
2 1 
3 2 
4 1 
1 4 
2 2 
0 2 
1 3 
3 3 
3 4 
2 3 
4 2 
0 3 

1  4 3  | 

♦Sum of the Three Grids PQ     Mode Value 
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TABLE 16 

RECTANGULAR GRID MODE COMPARISON BASED UPON MODE AMPLITUDE SQUARED 
FOR E-PLANE SCAN 

Y = E-plane sin 9 

a/X=0.6,b/X=0.2667 a/X=0.5898,b/X=0.5898 a/X=0.6364,b/X=0.6364 
PQ A/X=0.666,B/X=0.333 A/X=0.6439, B/X=0.6439 A/X=0.7071,B/X=0.7071 Sum* 

X= 0, Y= 0.4 X= 0, Y= 0.5 X= 0, Y= 0.375 

Principal Polarization 

1 1 0.0196 0.3919 5.8252 6.2367 
1 2 0.0190 0.2671 1.3283 1.6144 
14 0.0098 0.1079 0.4900 0.7669 
1 3 0.0044 0.0397 0.5256 0.5697 
2 0 0. 0. 0. 0. 
4 0 0. 0. 0. 0. 
2 1 0. 0. 0. 0. 
3 0 0.0036 0.0056 0.0123 0.0215 
3 1 0.0026 0.0015 0.0190 0.0232 
3 2 0.0001 0.0016 0.0111 0.0128 
2 2 0. 0. 0. 0. 
2 3 0. 0. 0. 0. 
4 2 0. 0. 0. 0. 
4 1 0. 0. 0. 0. 
3 3 0.0006 0. 0.0004 0.0010 
4 3 0. 0. 0. 0. 
24 0. 0. 0. 0. 
3 4 0. 0. 0.0086 0. 

Cross-Polarization 

1 1 0.0164 1.6377 10.8756 12.5297 
3 1 0.0056 0.2214 1.1537 1.3807 
1 2 0.0001 0.0749 0.5255 0.6005 
0 1 0. 0. 0. 0. 
2 1 0. 0. 0. 0. 
3 2 0. 0.0254 0.1723 0.1977 
4 1 0. 0. 0. 0. 
1 4 0. 0.0025 0.0146 0.0171 
2 2 0. 0. 0. 0. 
0 2 0. 0. 0. 0. 
1 3 0.0003 0.0006 0.0071 0.0080 
3 3 0. 0.0007 0.0111 0.0118 
3 4 0. 0.0020 0.0111 0.0131 
2 3 0. 
4 2 
0 3 
4 3 

*Sum of the Three Grids PQ     Mode Value 
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TABLE 17 

RECTANGULAR GRID MODE COMPARISON BASED UPON MODE AMPLITUDE SQUARED 

- 
FOR INTERCARDINAL SCAN 

a/X=0.6,b/X=0.2667 a/X=0.5898,b/X=0.5898 a/X=0.6364,b/X=0.6364 
PQ A/X=0.666,B/X=0.333 

X = 0.4, Y= 0.4 
A/X=0.6349, B/X=0.6439 

X = 0.5, Y= 0.5 
A/X=0.7071,B/X=0.7071 
X= 0.375, Y= 0.375 

Sum* 

Principal Polarization 

1 1 0.0179 0.1093 0.8665 0.9937 
1 2 0.0221 0.1353 0.2417 0.3991 
1 4 0.0112 0.0515 0.0861 0.1488 
1 3 0.0049 0.0211 0.0917 0.1177 
2 0 0.0093 0.0083 0.0049 0.0225 
4 0 0.0003 0.0002 0.0001 0.0006 
2 1 0.0157 0.0009 0.0026 0.0192 
3 0 0.0015 0.0013 0.0018 0.0046 
3 1 0.0018 0. 0.0001 0.0019 
3 2 0. 0.0002 0.0001 0.0003 
2 2 0.0014 0.0030 0.0012 0.0056 

t. 2 3 0.0035 0.0008 0.0016 0.0059 
4 2 0. 0.0001 0. 0.0001 
4 1 0.0008 0. 0. 0.0008 
3 3 0.0004 0. 0. 0.0004 
4 3 0.0003 0. 0. 0.0003 
24 0.0005 0.0010 0.0004 0.0019 
3 4 0. 0.0001 0. 0.0001 

Cross-Polarization 

1 1 0.0117 0.1704 0.9403 1.1224 
3 1 0.0037 0.0129 0.0681 0.0847 
1 2 0. 0.0038 0.0064 0.0102 
0 1 0.0053 0.1302 0.1996 0.3351 
2 1 0.0087 0.0609 0.1393 0.2089 
3 2 0. 0.0011 0.0033 0.0044 
4 1 0.0033 0.0163 0.0404 0.0600 
1 4 0. 0.0002 0. 0.0002 
2 2 0. 0.0035 0.0032 0.0067 
0 2 0. 0.0024 0.0054 0.0078 
1 3 0.0002 0.0003 0.0003 0.0008 
3 3 0. 0. 0.0002 0.0002 
3 4 0. 0. 0.0001 0.0001 
2 3 0.0002 0.0002 0.0001 0.0005 
4 2 0. 0.0010 0.0008 0.0018 
0 3 0. 0.0001 0. 0.0001 
4 3 0. 0. 0. 0. 

- 
*Sum of the Three Grids PQ1 Mode Value 
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TABLE 18 

RECTANGULAR GRID MODE ORDER 

Order H-Plane Scan E-Plane Scan Inter cardinal Scan 

PQ Sum PQ Sum PQ Sum 

Dominant Mode 

0 10 3.0000 10 3.0000 10 3.0000 

Principal Polarization 

1 
2 

20 
12 

0.0586 11 
12 

6.2367 
1.6144 

11 
12 

0.9937 
0.3991 0.0255 

3 14 0.0148 14 0.7669 14 0.1488 
4 30 0.0042 13 0.5697 13 0.1177 
5 40 0.0008 31 0.0232 20 0.0225 
6 22 0.0001 30 0.0215 21 0.0192 
7 32 0.0128 23 0.0059 
8 33 0.0010 22 0.0056 
9 30 0.0046 

10 31 0.0019 
11 24 0.0019 
12 41 0.0008 
13 40 0.0006 
14 33 0.0004 
15 32 0.0003 
16 43 0.0003 
17 42 0.0001 

Cr oss-Polarization 

1 12 11 12.5297 11 1.1224 0.0002 
2 31 1.3807 01 0.3351 
3 12 0.6005 21 0.2089 
4 32 0.1977 31 0.0847 
5 14 0.0171 41 0.0600 
6 34 0.0131 12 0.0102 
7 33 0.0118 02 0.0078 
8 13 0.0080 22 0.0067 
9 32 0.0044 

10 42 0.0018 
11 13 0.0008 
12 23 0.0005 
13 14 0.0002 
14 33 0.0002 
15 34 0.0001 
16 24 0.0001 
17 
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TABLE 19 

MODE ADMITTANCE CONTRIBUTIONS FOR A TRIANGULAR ÖRID ARRAY 
AT H-PLANE sin 9 = 0.5 

f = 0.905     ^=0.400     4=1.008      5. = 1.008 
A A A A 

P  Q AMPR AMPI G B 

Dominant Mode Contribution 

1   0 1.0000 0.0000 0.8098 1.7858 

Principal Polarization Contributions 

2   0 

2   4 

1 2 

2 2 

1   4 

0.1490 

-0.0526 

0.0477 

-0.0574 

-0.0265 

1.5292 

-1.2811 

1.1052 

-0.8268 

-0.6495 

-0.7520 

0.0022 

-0.0158 

-0.0101 

-0.0024 

1.9935 

0.0544 

-0.3658 

-0.1449 

-0.0581 

Cross-Polarization Contributions 

2   2 0.0119 0.2336 -0.0014 -0.0265 
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Figure 4.    Comparison of Theory and Experiment for an E-Plane Scan 
of an Array of Square Waveguides on a Square Grid 
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Figure 5.   Comparison of Theory and Experiment for an H-Plane Scan of an Array 
of Rectangular Waveguides on a Triangular Grid 
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SECTION V 

CONCLUSIONS 

The waveguide higher order modes in the order of decreasing importance are given in 

Tables 14 and 18 for triangular grid and rectangular grid, respectively.   These tables were 

compiled on the basis of the square of the absolute value of the mode amplitude coefficients 

obtained from solutions of simultaneous equations having 19 dominant polarization and 20 

cross-polarization modes.   The short lines in the columns represent the one-percent level 

as compared with the incident mode amplitude. 

The foremost conclusion is that even for grids giving sharply restricted fields of view, 

the number of modes necessary for a reasonably accurate representation of the radiation 

admittance is not excessively great even for an intercardinal point.   The worst case situa- 

tion, of intercardinal scan of a triangular grid, calls for about nine principal polarization 

higher order LSE modes and about three cross-polarization LSE modes.   For this case the 

expected running time for the available computer program is approximately 1.25 minutes 

per point in sine theta space.   In regions about E- and H-planes for the triangular grid and 

about E-plane for the rectangular grid, about eight higher order modes are necessary, for 

which the expected running time should be about 0.8 minute.   The region about H-plane scan 

for the rectangular grid requires only the TE 0 mode.   For a region around broadside, the 

simple grating lobe series alone is adequate.   At the present time there is not enough in- 

formation available to determine how far off from E-plane (for example) one may go and 

still safely continue to use the E-plane family of modes.   The same situation holds true of 

course for the extent of a "broadside" region and an "H-plane" region.   This is an area of 

investigation that is suggested for future work. 

The mode numbers mentioned above are those above the one-percent level of the square 

of the mode amplitude coefficient.   This level appears to be adequate for predicting a rela- 

tively stationary radiation admittance, but the notch position is apparently very sensitive to 

the value of the radiation admittance and so a greater number of modes is necessary if the 

position of the notch is to be predicted accurately.   The minimum number of modes necessary 

to predict the position of notch with confidence is not known and should be investigated further. 

41 



The analytical and numerical work concerning the range over which the external eigen- 

numbers should extend shows that if an eigennumber of the pair for the internal waveguide 

modes is equal to 4 then the associated external eigennumber should have a range of ±30. 

At the present time, the available computer program is written to take the most conserva- 

tive view that if any internal mode has either eigennumber of the pair equal to 4, then both 

external eigennumbers should have a range of ±30 for all members of the matrix for the 

simultaneous equations.    For example, the matrix element for which P, Q = 4, 2 and p, q = 

1, 2 is currently computed with -30 <    n - 30 and so has 3720 terms in the double sum for 

the element.   Reference to Figure 2 indicates that with P = 4 and p = 1, then M = 14, so 

-14 S m ^ 14, and with Q = 2 and q = 2 then N = 10 so -10 < n 5 10.   So doing would give 

only 609 terms in the double sum for that same element.   This possible reduction in labor 

and computer running time should be investigated further. 
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APPENDIX A 

DERIVATION OF THE MUTUAL COUPLING IN AN INFINITE ARRAY OF 
RECTANGULAR WAVEGUIDE HORNS 

The problem is solved by constructing Fourier Series expansions in terms of the normal 

modes for the field components in both the free space region and in the element waveguide. 

Both TE and TM modes are required in the free space region to account for the total far- 

field distribution (Ref. 1), and are included in the free space Fourier representation.    For 

completeness, both TE and TM modes are also included in the waveguide series expansion. 

Fourier methods are then employed to enforce the continuity of the total fields across the 

boundary of the face of the array. 

The radiation admittance equation as obtained by this method consists of the so-called 

grating lobe series for the dominant mode of the waveguide, plus correction terms.   Each 

correction term is the product of a higher order waveguide mode amplitude coefficient and 

a series having a form similar to the grating lobe series.   The higher order waveguide 

mode amplitude coefficients are obtained from the solution of a family of simultaneous 

equations which are derived concurrently with the admittance equation. It is obvious, there- 

fore, that the problem may not be solved exactly,   because in practice one is forced to 

truncate the grating lobe series, and there is also a practical limit to the number of wave- 

guide modes that one would with to consider.   Fortunately, the range of eigennumbers over 

which the grating lobe series needs to be summed is not excessively large, and only a few 

waveguide modes need to be considered in order to obtain reasonable accuracy. 

Figures la and lb show the rectangular array and triangular array, respectively.   In 

both cases the unit cell is outlined by a rectangle, the dimensions of which are the units of 

the lattice periodicity in the two directions.   Since the lattice is periodic, each mode of the 

field in the free space region of the array has a form governed by Floquet's theorem.   A 

suitable form is 

2mjrl        . [.     .  2n7r"| ,-j |> * ¥] x -J k   + -=-    y    TT    Z ,   y       B   I J mn ,.   .. e     L _J   e     L ^ Je (A-l) 

where 

k   = k   sin 0cos ib X o 

k   = k   sin 0sin ib y o                     ^ 

k  = |s 
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and where k A and k B are the phase shifts between adjacent lattice units in the x and y 

directions, respectively. 

A phenomenological visualization of the fields above the surface of the array for the 

case of arbitrary scan indicates that all three components of electric and magnetic fields 

could be present.   This condition is most easily handled by making a linear combination of 

TE and TM fields.   Let V      and M      be the respective mode amplitude coefficients for the mn mn ^ * 
TE       and TM      fields, and for ease in writing let mn mn ö 

ß    =k   +^ m      x       A 

ß    -k  + ^ n        y       B 

The six components of the combined TE-TM      or EM       mode are 
^ mn mn 

-j/3   x   -iß y    TT     z 
^ /TT      n       Tv/r       n   v HI n mn E   = - (V      ß   - M      ß   ) e e e x        v mn Kn        mn 'm' 

-\ß   x   -iß y    Tr     z 
TI n a   x m n mn 

E=(V      ß    + M      ß ) e e e y      v mn   m        mn   n7 

ß 2 + ß2   -iß x  -jß y   *r   z 
„       .. „ m     Kn   Ä 

JMm       JKnJ        mn E   = =FJ M        —-  e e e 
z       J     mn        T mn 

T jo;e   1    — i/3   x    -j/3 y    TT     z ™M J    ~  '     JKm       JfnJ        mn e e e j   ß   _*™ + M    p _o 
mn'm   JQ;M mn ^n   Tmn J 

H    = =F V      j3    ^  - M       ß     —-M 
y        L1™1   n jw/x mn'm   T     J 

r JOJ€   -i    -j/3   x    — jy3 y    TT     z 
e e e 

mn 

ß 2 + ß2    -iß   x   -iß y    TT     Z Mm     Kn       JAm       *"nJ        mn 
H   = j V      —:  e e e 

z      J   mn      jcüM 

where a time dependence of exp (jut) is understood and 

*.-MW*Sf-' 

(A-2) 

(A-3) 

(A-4) 

The upper sign of the double signs where they occur designates propagation in the positive 

z direction. 
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Six components of field can also be expected inside the aperture of the element wave- 

guide, and will be treated as a linear combination of TE and TM modes with respective 

mode amplitude coefficients E     and H    .   The six field components have the form pq pq 

E   = -TE      ^ - H      H] COS ^ sin 9EL /W 
x _pqb pqa_ a b 

E   =   [E      EI + H      f-~\ sin E* cos <&- e^ 
y      |_ Pq  a PQ  b J a b 

rELi2 + rai]2 Ty  z 

E =TH    LsJ LbJ_staE«8togae  M 
Z W ^pq a b 

H     =   T 
X 

y                        iw€   -l TV    z 
n      p7T   'pq     __ q7r  J     r |   .    p7rx q7ry    ^ rpq 
E      ^- .-" + H %-      sin ^— cos ^t~ e 

pq  a   jcüM        PQ b     ypq  J           a b 

[y                    -   icü€ -i xy    z _      q7r    *pq     __ p7r  JW r I         pro .     q7iy    + rpq 
E      tr -r-" - H —     cos ^— sin ~^- e    HM 

pq  b   jw/i        Pq   a    y     J           a b 

(A-5) 

rEEi2 + rail2 Ty  z 
H   = -E      i«4 ^ cos EH* cos SE e    M 

z pq jwjLt a b 

relative to the lower left-hand corner of the element waveguide.   A time dependence of 

exp (jout) is understood, and 

ypq = \ V[S]2 + ffi]a-r <A"6> 
where e   is the relative dielectric constant in the waveguide. 

It is assumed that energy is incident from inside the element waveguides with an ampli- 

tude of unity and in the dominant TE mode having p = 1 and q = 0, and so the wave has its 

"principal" polarization in the y-direction.   It is further assumed that the wave is reflected 

from the plane of the surface of the array with a voltage reflection coefficient R.   The total 

transverse field can now be written for the entire cross section represented by the array 

space cell.   It is assumed that the outline of the free space cell extends in both directions 

from the face of the array. 
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At a point z 5 0 the transverse fields for the triangular grid are written according to 

the following auziliary definitions. 

u1 = i 

= 0 

U2 = I 

=   0 

U3 = I 

=   0 

u4 = i 

= 0 

U5=I 

_a<x <a      _b<v <b 
2~" "2 • 

elsewhere 

2 "y "2 

_ £1 < B      b < „ < B v x  ^   - —- + —       _ _ _ ^  v  ^ — 

elsewhere 

B _A<      <     Aa B <      < 
"2"X""2      2 '    ~ 2  ~y   ~     2      2 

elsewhere 

- - - < x < - 
2      2 

elsewhere 

A 
2 

A     i <      < A 
2   " 2  " X "   2 

= 0;    elsewhere 

uxl = 0, uyl = 0 

A B 
Ux2          2 ' Uy2          2 

A B 
Ux3 ~      2 ' Uy3      "2 

A B 
Ux4         2 ' Uy4         2 

A B 
Ux5         2 ■ Uy5      "2 

B b  <      < B 
2  " 2   " y "  2 

_B<      <_B+b 
2      y 2      2 

where "I" is unity for uniform amplitude elements in a triangular grid.   Note that the unit 

cell dimensions are such that if I = 0, the above definitions also describe the rectangular 

grid.    Within a unit cell, at a point z 5 0 below the face of the array the transverse fields 

are 

. cos x        Z-rf L-J L pq  b pq   a J Z-rf     i 
p=0   q=l i=l 

q71" Ty + 77 - u .1 -j k   u.    -ik   u.    y    z 
.    n   LJ      2       viJ x   xi     J   v   vi    rPQ 

p7r [x + f - uxi] 

sin 

(A-7) 
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[- 7. nz         T- „z"l      w-^                7r | x + - - u . I    -jku.    -jku. 
e     10   + Re  10 J  K-^2 u.  sin -I ^—2ESi e       X   Xl e       y   yi 

KX+f-Uxi] 

E   =    e 
y    L 

i=l 

oo      oo   t 5  r_       a 

L~d L-J  |    pq   a        pq  b J L-J     I a 
p=l   q=0 i=l 

q71" I y + Ö - u .1     -iku.    -iku.   y    z 
cos       

Ly     2 Y±!  e      x   X1 e      y   yl e pq 

b 

- 7- nz y.. nz~|        y1 n —-^ 7T |~x + f- - u .1     -jku.    -jku. 
H   = - I e     10   - Re 10 J I 3 V U. sin -I ? Si e      x   xi e      *   * x        L J a  jojju Z—'     i a 

i=l 

5 

+ 
£-*  Z—/        pq   a JCJM        pq  b     y Z—/    i                       a 
p=l   q=0 pq       i=l 

q^Ty + ö - u -1 -j k u .   -j k u . y   z n   LJ      2       viJ x   xi     J   v   vi 'PQ 

(A-7) 

cos . _Jiie       X   Xle       y   yiP 

y     Lf ZJ   L pq b   jwfi        pq  a    y_   J Z-f     i a 
p=0   q=l pq       i=l 

sin 
Q71" Ty + K ~ u -1     -jku.    -jku.   y    z _. 1/      2        viJ   .       x   xi     J   v   Vi     PQ 

where  y      y ^  signifies that the mode p=l, q=0 is to be excluded from the summation. 

p=l   q=0 

The summations with "i" as the index accommodate the partial waveguide apertures at the 

four corners of the unit cell in their proper phases relative to the waveguide at the center 

of the cell by virtue of the definitions given above. 

Within a unit cell, at a point z - 0 in the free space region above the face of the array, 

the transverse fields are 

JZ+ JZ- -j ß   x    -j ß y    - r     z 
E=TVrv     ß   -M      ß   le      m   e      n   e    mn (A-8) x        £ma '  * L mn ^n        mn pmJ v       ' 

—OO —OO 
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AA -jßx-jßy-r     z 
T^ X^^Vir a        ,   ix/r o   1 m n mn E   = 7    7     V      ß    + M      ß    e e e y     /  JS  J\   mn   m        mn   nJ 

H   = - YT>     /a     ^ + M      ^    ^1 e"3 ^ e"° ^ e" ^ (A-8) 
_oo  -00 L mnj 

H = -yy> ß J=5- 
y        Z—/Z—rf    mn ^n   jcu/n        mnrm T 

—00   —00  •— n J 

_    -3 /3   x    -3 ß y    - r     z 
- M j3_ ^— I e e e 

mn. 

In Equations (A-7) and (A-8), the longitudinal fields E   and H   have been omitted from 
z z 

consideration because they are derivable from the transverse fields through Maxwell's 

equations and therefore presenting them would be redundant. 

At this point we have expressions for the components of the total possible field that 

may exist on each side of the plane of the face of the array.   In the plane of the junction 

(z = 0) the field in the waveguide system must equal and be continuous with the field in 

the free space region over the cross section of the unit cell.   Therefore, 

E    (waveguide)   I    = E    (free space) 
x z=0       x z=0 

(A-9) 
E   (waveguide)       = E    (free space)   I 

y z=0       y z=0 

with a range of validity that extends over the entire cross section of the cell since, at 

points other than within a waveguide aperture, the electric field is parallel with a con- 

ducting surface and is therefore identically zero.   A magnetic field parallel with a con- 

ducting surface is discontinuous at the surface by an amount of the surface current so the 

magnetic field continuity equations 

H    (waveguide)       = H   (free space) 
x z=0       x z=0 

(A-10) 
H   (waveguide)       = H    (free space) 

y z=0       y z=0 

are valid only over the cross sections of the waveguide apertures (or fractional apertures) 

within the boundaries of the cell. 

Since the electric field continuity equations are valid everywhere, let us multiply both 

sides of each equation by the function 
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j£rx  )ßsy 
e e 

orthogonal to the free space set, and integrate over the cell cross section. The result 

of the integration on the free space side of the equations is zero except when r = m and 

s = n, from which we obtain expressions for 

V      ß    - M       ß mn   n        mn   m 

and 

V      ß     + M       ß mn   m        mn   n 

from the E   and E   continuity equations, respectively.   These are readily solved for 

V      and M     , but first let us define the following functions, mn mn 

Sm»>" 

S„M ■ 

M-lfY 

m2 - kf 

(A-ll) 

ö =1+1 cos mir cos n7r 
mn 

where as before "I" is unity for a triangular grid and zero for a rectangular grid.   As a 

result 

v      - ' -^- ft 
mn "    AB    mn 

.    7T 
2   , ß       ß -1   7T 

<1 + R)[ä]    ä     2        2 Sm'1'g.',"e 

m       n (A-12) 

a     ' m 
2.2 

~ oo oo 

^y^y"   TE      32L . H      fill SE   . s    <p) S  (q) e"J 

- L-jL-J L pq  b pq   aj   2 m^'   nVM/ 
2       J  2 

e 

^m        n    p=0 q=l 

^ OO OO      j 

u        ß        ß V"^X~^ 
+    T- 

m ^0 T^y   TE      ^ + H      9ll EL • s    (p) S (q) e"3 
g2   /   J f   J |_ pq   a pq  b J  2 mVF/   nVM/ 

'm+'n 

_iE2L   _iSE 
2      J 2 

e ] 
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M = J  TIT Ö mn    J AB    mn 

2 ß2 -jS 

<1+R>[f]    I p7^ V1) Sn<°> e     2 

m
       n (A-13) 

a m X     \     TT.      Q71"     TT      P71" I q^  . o    , v o  , v 2        J 2 
2  ^2        2 

Mm     pn     p=0 q=l 
[E

Mf-«pq?]¥'=n,<P>V'> 

pm       n    p=l q=0 

It has been pointed out that the magnetic field continuity equations are valid only with 

the   confines of the waveguide apertures (or partial apertures) enclosed by the cell. There- 

fore, let us multiply both sides of each equation by the appropriate function for each that is 

orthogonal to the waveguide set, and integrate over the enclosed waveguide apertures. For 

H  , the appropriate function is 
x 

5 a b X~^ r7T(x + - - u  .) S7T(y + - - u .)     jk   u .   jk   u . 
V     TT   «<«               2       xi' _o       u     2       yv   J   x   xi   J   y   yi /     U. sin   cos  r *— e e    J   J 

/  *    i a b 
i=l 

and for H  , it is 
y 

5 a b >      . , . , Er7T(x + — - u  .) S7T(y + — - u .)     lk   u.    ik   u. v       2       xr VJ     2       yr     J   x   xi   J    y   yi 
U. cos   sin   r J— e e    J   J 

l a b 
i=l 

Before performing the integration let us replace p and q by P and Q, respectively, in order 

to avoid confusion later on in the development.   The results of the integration on the wave- 

guide side of the equations is zero except when r = P and s = Q.   From the H   continuity x 
equation we obtain 

oo oo 
v   "W   ^        r r icü€ -iß b 

1_R= mL&Y?jmL   [v     ß       nm+M      ß    p>l-L s   (1) S (0)       (A-14) 
y10      /   >/  -.l+T   I mn pm  )uß mnpn   r     J  2      mv '   nv 

and 

mn 
—oo       —oo 
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^PQ   a    jo)M PQ  b    TpQ 

<5       r r jw«-,0b P7T \~^ X ^ mn r,r      o       mn 
= j2tOQ 1~ . / *  *   ' i +T      mn ^m JCJJU mn Kn   r 2 v 

P7T Q7T 
Jo J     p 

•   S   (P) S (Q) e    *   e 
mv   '   nv   ' 

where 

£OQ = 1    ifQ = ° 

= 2    otherwise 

From the H   continuity equation we get 

Qi !PQ    H       P* 3ctf<r 
^PQ   b    jwM  "    PQ   a    ypQ 

oo oo 

-oo        -oo 

ö       r- r iü;€   -> j3   a o 
r mn 

a»    »  «    > u,_ i cut   -i p    a. 
7T X^ X      mn |TT      O     mn     .,       0     

J     o 1   m ..   ifl, 

-^ *-^ ^- 11111     "J 

.   P7T      .  Q7T 
J   2     J   2 S    (P) S (Q) e e 

mv   '   nv   ' 

where 

,op = i   ItP-O 

= 2    otherwise 

Let us now consider the substitution of V      and M       from Equations (A-12) and (A-13) mn mn 
into Equations (A-14),  (A-15), and (A-16).   After having done so, we can define anew pair 

of amplitude coefficients. 

_.  p_7T .   q7T 

C    =ä-J— rE    3ZL-H    Ei-ie"] 2 e'
J 2 

pq      7T   1 + R   L pq   b pq   a J v ' 

-i £ -j as. 
D    = ä     l      rE     EE + H     SET e    

2 e    2 (A-18) 
pq      IT   1 + R   L pq   a pq  b J 
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